Mixed regularization methods for the Cauchy problems
of the Helmholtz equation
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In this paper, two mixed filter functions are applied for the regularization of the Helmholtz
equation. Bound of error is presented under a priori bound respect to the exact solution. At
last, the numerical experiment shows the efficiency and effectiveness of these methods.
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Introduction

It is well known that inverse problems of elliptic equations are ill-posed in the sense that small
noise in input data can introduce arbitrarily large error in the solution [YY]. For continuous
dependence of the solution on the Cauchy data for satisfying Third Hadamard well-posedness
condition, additional conditions are needed. These conditions are bounds for the norm of the
solution and noise.

Class of Regularization methods includes a lot of various methods for minimization of noise
effects. The classical methods such as, Tikhonov method, truncate singular value decomposition
(TSVD), L-curve method and iterative methods can be found in [Y-))].

In the literature inverse problem of the Cauchy problem of Helmholtz equation solved by some
numerical methods such as separation of variable, spectral methods, boundary element method
(BEM) and solution is severely ill-posed in large scale problems. Almost, the solution is
sensitive respect to noise norm. Regularization methods are approached to decrease this
affectability.

To vanish ill-posedness of this problem different regularization methods applied by Xiao-Li
Feng et al [V], Hao Cheng etal [¢], H.H. Qin and T. Wei [°], Xiangtuan Xionget al [*], Haihua
Qin and Jingmei Lu [Y°]. In classical methods, accuracy is low and for new iterative methods the
computational cost is high.

In this paper, two filter functions are utilized from mixing (TSVD), exponential functions and
Tikhonov filter. To decrease the truncation error in numerical implementation of Tikhonov
method in unbounded problems, problems with a large variance in a spectrum similar to Cauchy
problems of Helmholtz and Laplace equations, we can apply TSVD-exponential filtering by
using of TSVD method in one part of the spectrum and exponential filtering in another part.

. Mathematical problem

We consider Cauchy problem for the Helmholtz equation with Cauchy conditions:

Aw(x,y) + k'w(x,y) =+, <x<m;.-<y<) (\Y)
w(x, ) = @(x), <x<m
wy (x, ) =P (x), <x<m
w(,y) =w(m,y) = -, LSy <

According to the linearity of the problem (V,)), we divide it into the following two ill-posed
problems:
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Au(x,y) +k'u(x,y) =+, <x<m;-<y<\ (.y)
u(x, -) = @(x), -Sx<m

u,(x) = .<x<m

u-y) =u(my) =, LSy <y

and

Av(x,y) + k'v(x,y) = -, LKx< ;- <y <) ()
v(x, ) =, .<x<m

v, (x,-) =P (), <x<m

v(,y) =v(my) =, <y <)

Where w = u + v is solution of the problem (),)). In problem (V,Y) the positive real number
k is the wave number, the noisy data ¢ (x) instead of Cauchy data is available which satisfies:

los —@ Il <6 (\.f)
Suppose that the a priori bound is:

max|lu(:,)|| < E (V0)

Spectral Galerkin Method (SGM) leads to a solution of problem (,Y) as follows [1]:
u(x,y) = Z(sin(nx) , @(x))sin(nx) Cosh(v n‘—k‘y) QR
n=\

where (., .) denotes the inner product in L' (+,m) which is defined by:

(sin(nx), @(x)) = %fﬂ(p (t) sin(nt) dt (QR))

If n < k, then cosh(vVn™—k™y) = cos(Vk"—n"y) and singular values of the problem is small
and if n > k the singular values are exponentially and multiple with noisy data. For overcoming
to noise propagation the introduce the regularization methods.



Y. Regularization methods

Optimality of the regularization methods theoretically is presented in ['] and recently
application of regularizations methods are: iterative methods [YY],L-curve method [)7],
landweber method [ ¢], TSVD method [YA], optimizational method [Y+], variational method

"]

Several methods for elliptic equations are presented in [V, Y4, Y¢] and for this problem some
methods are applied such as regularization with posterior parameter [Y], Tikhonov method [)°].
Some advantages of these methods are shown in [YY-)¢].

For ill-posed inverse problem Ax = b regularization method is defined as:
R, & g, (A*A)A* QR))
Where A* is the adjoint operator of A .
Filter functions are class of functions which satisfy:

lim ¢, (1) =1 (v.y)
a—-
The most popular regularization methods by filtering are Tikhonov and TSVD methods. In
these methods inverse operators are defined by filter functions:
)
9a (/D = Id)a (A) (Y'\M)

For ¢, (1) = 1 the inverse operator is ill-condition and solution is naive. Selection of a can be
helpful to avoid noise propagation.
At first, we will consider TSVD filter function for this problem:

A=«

NOES e (v¥)

and \

9. =17 Aza (v0)

. A<a

where 2 = V/cosh(vn"—k"y) is the singular value of the inverse problem.
Supposex*, x,, x °denote exact solution, regularization solution and noisy solution of the

problem, respectively. The truncation error function (TEF) is defined as:

7, () =1 — ¢, (1) (v5)

The truncation error depends on (TEF):

x*—x,=1,(A"A)x" (v.v)

)



In Tikhonov method we choose the filter function as:

Y

A
b, (1) = T a (v.A)

This filter is the cumulative distribution function (CDF) of the gaussian (normal) random
variable
and

A
9 = 76, = 75— )

Is the probability distribution function (PDF) of the Gaussian (normal) random variable.
Tikhonov regularization is equal to normalization of the singular value. Equivalently, we can use
the exponential form of these filters:

¢ (D) = <\ - e_%) (v)+)
A
9a (D) =%¢a(/1) = %<\ —67) (v.1)
For exponential random variable (CDF) and (PDF):
¢, (D) = e (YY)
9. = }1% ) = %e‘x (¥.%)

By this approach we can build different filter functions with considering (CDF) and (PDF) of
random variables. But, filter structure should be similar to distribution of the singular values.
In the Cauchy problem of Helmholtz equation, the singularity is exponential and exponential
filters can be helpful.

Method (1): By use of TSVD method for the first part of the spectrum, we can select the
truncation parameter N from (Y,°) as follows:

A ="/cosh(Nn'—k'y) = a = N = [{/(arccosh(a))" + k'] (v.¥)
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And in the another part the filter function is equal to the exponential function (Y,V)).The solution
of problem (Y,%) has the form as:

u(x,y) = Z(sin(nx) ,0(x)) sin(nx) cosh(vVn' —k*y) + (v.\0)

[oe]

Z (sin(nx), @(x))sin(nx) cosh(my) (\— eV cosh(Wy))

n=N+\
Method (I): From (Y,)Y) and similar approach, we get:

N

u(x,y) = Z(sin(nx) , @ (x))sin(nx) cosh(\/ n‘—k‘y) + (v.)%)

n=\

Z (sin(nx), @ (x))sin(nx) cosh(Vn'—k'y) e™@ cosh(vaT=kTy)

n=N+\

¥. Error bounds
The error bound for regularization method (1) is obtained as follow :

Lemma (¥, )): Suppose that u is the exact solution and u® is the regularization solution by
method (1) for problem (,Y) also will two conditions (V,¢) and (,°) satisfying. If we select
a= (g)y, then for fixed + < y < Y we get the error bound:

luCx,y) = ué(x,9)|| = 6“3’E3’(\+”\;’Tgn) ()

Proof: We compute bound of error in two parts of spectrum:

If n <N, then

> Y
[Jun e, 3) — u G| = %le)‘s — @,sin(nx))|" cosh'(V—k'y) < 2—
n=\

Y
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é
||uN(x' )’) - u61v(x;}’)|| S EZ 6\_3’Ey (\NY)

If n > N, then

llw Ce,y) —ud e || =

0o Y
lu Ge,y) —uf (x, )’)”v = %ZK(/"S -, sin(nx))rcosh‘(\/n*—k‘y) (e a cosh(Vn ""‘YJ’)> <
n=\

sup cosh"(vn'—k"y) (e acosh(hy))E\‘ y (o — <,06,Sirl(nx)>|Y
n>n cosh'(vVn'—kY) (e, sin (nx))|"

cosh(VnT—kTy) _ ye VW K0Y) gnd o = (&)Y
E b

Since in this part of the spectrum cosh(m ) = we get:
[[w Ge,y) —ud (e, 9| =

\ —
supye VKO- (e acosh(Va'™=k"y) | d <Y6Y “EY (v.¥)
n>N llpll = llell

Adding (¥»Y) and (,Y) yields (¥,)).

For regularization method (Il) the error bound satisfies in (¥,)) and for problem (V,Y) with
Cauchy data ¥ bound of error is similar. In more general problem (Y,") bound of error for both
methods is utilize from summation of these bounds.

Lemma (¥, Y): Suppose that w and w? is the exact and regularization solution by each of
methods (1) and (II) for problem (Y,)) respectively, and two conditions (,¢) and (V,°) are
satisfied. If we select o = (g)y, then for fixed + < y < Y we get the error bound:

||w(x,y) —wé(x, y)|| = v§'"YEY(\+ %) (v.¥)
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¢ . Numerical tests

In this section, some numerical examples are presented for verifying the validity of the proposed
methods. To compare the exact and approximate solutions root mean square relative error is
used:

M

\
— Ja B B 0 e ) = e )

(a2 B ey

\

where xizﬁ(i— D,y =2G=Y 0= M, =), M M =T

Test. ) We consider the following Cauchy problem:

Au(x,y) + ku(x,y) = -, < x<m; <y <) A))

u(x,\) = x"(m— x) + sin(vkx) cosh(v¥k), -<x<m

u,(x,-) =+, .<x<m
u(-,y) =u(my) = -, <y <y
We select

o) = ulx, ) = Z:\W(x’ ), sin(nx))sin (nx) cosh(\/ﬁ)

as Cauchy data for problem (¢,Y), with m=Y1, & denotes the error level and noisy Cauchy data is
0% =@ + e(x — v) (¥ — x)sin(x).

In Fig) we show exact solution and the error between the regularized solution (I) and the exact
solution. In Fig¥ we show the numerical results aty =),k =+.ofore=")+"",1+"" o x V7"



Fig ). Exact solutionu for k=+,° ub—u withe=1.""

Table ). RMSRE with k= +,° for method (1)

RMSRE IR R A A cie e eIV ciee e 0.0281

Table Y. RMSRE with k= +,° for method (Il)

RMSRE c.eeeYAYAY oo v +FAAYA oo X5 0.0287
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The relative root mean square error between the regularized solution methods (1), (I1) and the
exact solution is shown in Tables Y,Y.

Test. Y) For Cauchy problem:

Au(x,y) + ku(x,y) =, <x<m;-<y<) (£.Y)
u(x,.) =@x) =sin(x), -<x<mu
uy(xl’)='r Sx<T

u(’;y)=u(7'[;y)=’: ’SyS\

the exact solution is:

u(x,y) = cosh(v) — k*y) sin(x) (£.Y)
Suppose that the noisy version Cauchy data is ¢® = ¢ + & randn(size(¢)) and M=°-,

In Fig™ we show exact and regularization solution for methods (1) and (Il) for k=-,Y, Y,V
and £ = Y+ 7" aty=+,9. the errors for k=Y,¥ and y=+.°, +,4 are shown in Table Y.

Table &, k=T.%, ¢ = «.)

y 0.5 0.9
RMSRE (I) '_'\Y' h.hh..li
RMSRE (II) LYY el
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Test. ¥) The exact solution of the problem (),)) with ¢ = s = sin(y/vkx) and k = V¥ % is:

u(x,y) = sin(vvkx) <cosh(ky) + w)

. ) - . .
The numerical results for k= —,e= 12X+ Yy =+.,+.2,+ A are shown in Figé. and the

. . Al —Y .
errors between the exact and regularized solutions for k = FE= X Y+~ are shown in Table ¢
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RMSRE(II) ..+ ¥V oo ¥ -+ YYA oY) 0.0179
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Conclusion

For both methods the errors are the same. For problems with exponential singularity use of

TSVD-exponential filters are efficient. For decreasing truncation error use of exponential filters
in truncated domain are effectiveness.
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